Telegram Group & Telegram Channel
🗣 آموزش تبدیل گفتار به نوشتار با پایتون | بهترین روش‌های تبدیل ویس به متن

📝 زبان: فارسی
🎥 تعداد ویدئوها: 11 ویدئو
مدت: حدود 9 ساعت و 25 دقیقه
💽 کیفیت: بسیار خوب
📊 سطح آموزش: متوسط
👤 مدرس: بهمن روئین
🌀 سورس: ندارد
🔗 منبع: دانشجویار

ادامه ...

◉ نیازهای بازار کار را برآورده کنید:
امروزه، تخصص در زمینه تبدیل گفتار به نوشتار، به یک مزیت رقابتی در بازار کار فناوری اطلاعات تبدیل شده است. با گذراندن این دوره، شما می‌توانید به راحتی نیازهای شرکت‌ها و سازمان‌ها در این زمینه را برطرف کنید.

پردازش گفتار چیست؟

پردازش گفتار (Speech Processing) یکی از شاخه‌های مهم هوش مصنوعی و پردازش سیگنال است که به ماشین‌ها امکان درک و تفسیر گفتار انسان را می‌دهد. این فناوری شامل مجموعه‌ای از الگوریتم‌ها و مدل‌های ریاضی است که برای تجزیه و تحلیل، تشخیص، تبدیل و پردازش گفتار مورد استفاده قرار می‌گیرند. تبدیل گفتار به نوشتار یکی از مهم‌ترین کاربردهای پردازش گفتار است که در این دوره به آموزش آن می‌پردازیم.

💢 مراحل پردازش گفتار معمولاً شامل موارد زیر است:

‏◈ جمع‌آوری داده‌های صوتی: استفاده از میکروفون برای دریافت ورودی صوتی.
‏◈ نمونه‌برداری و دیجیتالی‌سازی: تبدیل سیگنال آنالوگ صوت به داده‌های دیجیتالی.
‏◈ پیش‌پردازش: حذف نویز و تقویت بخش‌های مهم صوت.
‏◈ استخراج ویژگی‌ها: تحلیل فرکانسی و زمانی صدا برای شناسایی الگوها.
‏◈ مدل‌سازی و تشخیص گفتار: استفاده از مدل‌های یادگیری ماشین برای تطبیق صدا با متن.
‏◈ تبدیل خروجی به متن: نمایش خروجی به‌صورت متن قابل‌فهم برای انسان.

کاربردهای پردازش گفتار

امروزه پردازش گفتار در صنایع مختلفی کاربرد دارد و به بهبود تعامل انسان و ماشین کمک می‌کند. برخی از کاربردهای کلیدی عبارتند از:

‏⪧ دستیارهای صوتی: Siri، Google Assistant، Amazon Alexa
‏⪧ زیرنویس خودکار: ایجاد زیرنویس برای فیلم‌ها و ویدیوهای آموزشی
‏⪧ جستجوی صوتی: امکان جستجوی اطلاعات بدون نیاز به تایپ
‏⪧سیستم‌های تبدیل گفتار به متن: ابزارهایی مانند Google Docs Voice Typing
‏⪧ ربات‌های پاسخگو: چت‌بات‌ها و سیستم‌های خدمات مشتریان مبتنی بر صوت
‏⪧ ترجمه هم‌زمان: تبدیل گفتار یک زبان به زبان دیگر در لحظه

چالش‌های پردازش گفتار و تبدیل گفتار به نوشتار

‏⏎ نویز محیطی
یکی از بزرگ‌ترین چالش‌های پردازش گفتار، وجود نویز در محیط است. وقتی کاربر در یک مکان شلوغ مانند خیابان یا مترو صحبت می‌کند، کیفیت صدای ضبط‌شده کاهش می‌یابد و سیستم ممکن است نتواند گفتار را به‌درستی تشخیص دهد. برای کاهش این مشکل، می‌توان از فیلترهای کاهش نویز و تکنیک‌های پردازش سیگنال استفاده کرد.
‏⏎ تفاوت‌های لهجه و تلفظ
افراد مختلف حتی در یک زبان واحد، لهجه‌ها و شیوه‌های تلفظ متفاوتی دارند. برای مثال، در زبان فارسی، لهجه‌های تهرانی، مشهدی، اصفهانی و شیرازی تفاوت‌های محسوسی در نحوه بیان کلمات دارند. مدل‌های پردازش گفتار باید به‌گونه‌ای آموزش ببینند که بتوانند این تفاوت‌ها را درک کنند.
‏⏎ تشخیص کلمات هم‌صدای متنوع
در برخی زبان‌ها، کلمات مشابهی وجود دارند که تلفظ یکسانی دارند اما معانی متفاوتی دارند. برای مثال، در زبان فارسی کلماتی مانند “ماه” (ماه شب) و “ما” (ضمیر جمع) از نظر تلفظ شبیه هستند اما مفهوم کاملاً متفاوتی دارند. حل این مشکل نیاز به استفاده از پردازش زبان طبیعی (NLP) و زمینه‌کاوی متن دارد.
‏⏎ سرعت گفتار و تغییرات ریتمیک
برخی افراد سریع صحبت می‌کنند و برخی دیگر آهسته. سیستم‌های پردازش گفتار باید بتوانند خود را با سرعت‌های مختلف تطبیق دهند تا دقت تشخیص کاهش پیدا نکند.

‏⏎ نیاز به داده‌های گسترده برای آموزش مدل‌ها
مدل‌های پردازش گفتار معمولاً با استفاده از شبکه‌های عصبی عمیق و یادگیری ماشین آموزش داده می‌شوند. برای بهبود دقت، این مدل‌ها به مجموعه داده‌های صوتی بزرگ و متنوع نیاز دارند که جمع‌آوری و پردازش آن‌ها ممکن است هزینه‌بر و زمان‌بر باشد.

ادامه دارد...

#ویدئو #فیلم #پایتون #گفتار #متن
#Video #Python #Voice #Text
🐍 @PythonForever



tg-me.com/PythonForever/24316
Create:
Last Update:

🗣 آموزش تبدیل گفتار به نوشتار با پایتون | بهترین روش‌های تبدیل ویس به متن

📝 زبان: فارسی
🎥 تعداد ویدئوها: 11 ویدئو
مدت: حدود 9 ساعت و 25 دقیقه
💽 کیفیت: بسیار خوب
📊 سطح آموزش: متوسط
👤 مدرس: بهمن روئین
🌀 سورس: ندارد
🔗 منبع: دانشجویار

ادامه ...

◉ نیازهای بازار کار را برآورده کنید:
امروزه، تخصص در زمینه تبدیل گفتار به نوشتار، به یک مزیت رقابتی در بازار کار فناوری اطلاعات تبدیل شده است. با گذراندن این دوره، شما می‌توانید به راحتی نیازهای شرکت‌ها و سازمان‌ها در این زمینه را برطرف کنید.

پردازش گفتار چیست؟

پردازش گفتار (Speech Processing) یکی از شاخه‌های مهم هوش مصنوعی و پردازش سیگنال است که به ماشین‌ها امکان درک و تفسیر گفتار انسان را می‌دهد. این فناوری شامل مجموعه‌ای از الگوریتم‌ها و مدل‌های ریاضی است که برای تجزیه و تحلیل، تشخیص، تبدیل و پردازش گفتار مورد استفاده قرار می‌گیرند. تبدیل گفتار به نوشتار یکی از مهم‌ترین کاربردهای پردازش گفتار است که در این دوره به آموزش آن می‌پردازیم.

💢 مراحل پردازش گفتار معمولاً شامل موارد زیر است:

‏◈ جمع‌آوری داده‌های صوتی: استفاده از میکروفون برای دریافت ورودی صوتی.
‏◈ نمونه‌برداری و دیجیتالی‌سازی: تبدیل سیگنال آنالوگ صوت به داده‌های دیجیتالی.
‏◈ پیش‌پردازش: حذف نویز و تقویت بخش‌های مهم صوت.
‏◈ استخراج ویژگی‌ها: تحلیل فرکانسی و زمانی صدا برای شناسایی الگوها.
‏◈ مدل‌سازی و تشخیص گفتار: استفاده از مدل‌های یادگیری ماشین برای تطبیق صدا با متن.
‏◈ تبدیل خروجی به متن: نمایش خروجی به‌صورت متن قابل‌فهم برای انسان.

کاربردهای پردازش گفتار

امروزه پردازش گفتار در صنایع مختلفی کاربرد دارد و به بهبود تعامل انسان و ماشین کمک می‌کند. برخی از کاربردهای کلیدی عبارتند از:

‏⪧ دستیارهای صوتی: Siri، Google Assistant، Amazon Alexa
‏⪧ زیرنویس خودکار: ایجاد زیرنویس برای فیلم‌ها و ویدیوهای آموزشی
‏⪧ جستجوی صوتی: امکان جستجوی اطلاعات بدون نیاز به تایپ
‏⪧سیستم‌های تبدیل گفتار به متن: ابزارهایی مانند Google Docs Voice Typing
‏⪧ ربات‌های پاسخگو: چت‌بات‌ها و سیستم‌های خدمات مشتریان مبتنی بر صوت
‏⪧ ترجمه هم‌زمان: تبدیل گفتار یک زبان به زبان دیگر در لحظه

چالش‌های پردازش گفتار و تبدیل گفتار به نوشتار

‏⏎ نویز محیطی
یکی از بزرگ‌ترین چالش‌های پردازش گفتار، وجود نویز در محیط است. وقتی کاربر در یک مکان شلوغ مانند خیابان یا مترو صحبت می‌کند، کیفیت صدای ضبط‌شده کاهش می‌یابد و سیستم ممکن است نتواند گفتار را به‌درستی تشخیص دهد. برای کاهش این مشکل، می‌توان از فیلترهای کاهش نویز و تکنیک‌های پردازش سیگنال استفاده کرد.
‏⏎ تفاوت‌های لهجه و تلفظ
افراد مختلف حتی در یک زبان واحد، لهجه‌ها و شیوه‌های تلفظ متفاوتی دارند. برای مثال، در زبان فارسی، لهجه‌های تهرانی، مشهدی، اصفهانی و شیرازی تفاوت‌های محسوسی در نحوه بیان کلمات دارند. مدل‌های پردازش گفتار باید به‌گونه‌ای آموزش ببینند که بتوانند این تفاوت‌ها را درک کنند.
‏⏎ تشخیص کلمات هم‌صدای متنوع
در برخی زبان‌ها، کلمات مشابهی وجود دارند که تلفظ یکسانی دارند اما معانی متفاوتی دارند. برای مثال، در زبان فارسی کلماتی مانند “ماه” (ماه شب) و “ما” (ضمیر جمع) از نظر تلفظ شبیه هستند اما مفهوم کاملاً متفاوتی دارند. حل این مشکل نیاز به استفاده از پردازش زبان طبیعی (NLP) و زمینه‌کاوی متن دارد.
‏⏎ سرعت گفتار و تغییرات ریتمیک
برخی افراد سریع صحبت می‌کنند و برخی دیگر آهسته. سیستم‌های پردازش گفتار باید بتوانند خود را با سرعت‌های مختلف تطبیق دهند تا دقت تشخیص کاهش پیدا نکند.

‏⏎ نیاز به داده‌های گسترده برای آموزش مدل‌ها
مدل‌های پردازش گفتار معمولاً با استفاده از شبکه‌های عصبی عمیق و یادگیری ماشین آموزش داده می‌شوند. برای بهبود دقت، این مدل‌ها به مجموعه داده‌های صوتی بزرگ و متنوع نیاز دارند که جمع‌آوری و پردازش آن‌ها ممکن است هزینه‌بر و زمان‌بر باشد.

ادامه دارد...

#ویدئو #فیلم #پایتون #گفتار #متن
#Video #Python #Voice #Text
🐍 @PythonForever

BY Python Forever


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/PythonForever/24316

View MORE
Open in Telegram


Python Forever Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Python Forever from id


Telegram Python Forever
FROM USA